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At the end of this talk you should be 
able to 

• Build a CUDA C code 

• Build a CUDA Fortran code 

• Build an OpenCL code 

• Share data between CUDA and libsci_acc 

• Share data between OpenACC and CUDA 

• Share data between OpenACC and libsci_acc 
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CUDA/OpenCL PE integration 

• As you would expect, much of the complexity 
of using CUDA/OpenCL on an XK6 has been 
simplified via compiler wrappers. 

• Loading the cuda module 
– Adds nvcc to the path 

– Adds CUDA/OpenCL includes automatically 

– Adds -lcuda automatically 

– Changes to dynamic linking 

– Does not automatically link in -lOpenCL 
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CUDA/OpenCL PE integration 

• Loading the xtpe-accel-nvidia20 module 

– Automatically loads the cuda and libsci_acc 
modules 

– Enables OpenACC directives in CCE 

– Turns on dynamic linking 
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CUDA/OpenCL PE integration 

• nvcc does not know about MPI headers 

– Simplest solution: isolate CUDA C and MPI codes into 
separate files 

– More Complicated solution: explicitly include the MPI 
include directory in the nvcc compile 

• Building a .cu file enables C++ name mangling, so  

– C codes will need to be built with the CC compiler or… 

– Add extern “C” to continue using cc compiler 
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Some Gotchas 

• The module versions on chester have been 
temporarily locked at versions that are not 
current. 

– Sometimes you will need to swap several modules 
(even if they’re already loaded) to get things to 
build and link properly. 

– I’ve coded the Makefiles in the examples to help 
you with this when they can. 

– These problems will be fixed on the final machine 
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Code Samples for this talk 

• Please copy 
/ccs/proj/trn001/cray/titan_workshop_examp
les.tgz 

 

• Please hang on to these examples and slides 
to refer to when trying to build your codes. 
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CUDA FOR C 

January 2012 OLCF Titan Workshop 8 



CUDA for C - What? 

• CUDA C is a programming model that has been created 
and is supported by Nvidia. 

• It consists of both library calls and language extensions. 
– Only Nvidia’s nvcc compiler understands the language 

extensions 

• Lots of tutorials and examples exist online 

• Requires explicitly rewriting important parts of your 
code to 
– Manage accelerator memory 

– Copy data between CPU and accelerator 

– Execute on the accelerator 
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CUDA C (serial) 

• The Plan: 

– Write a CUDA C kernel and a C (or Fortran) main 
program 

– Build and link with nvcc 

– Launch executable with aprun 

• The Code: example1_serial/scaleitC.cu 

• Supported PEs: Any 

– Works best with GNU or Cray (with -hgnu flag) 
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CUDA C (MPI) 

• The Plan: 
– Write a CUDA C kernel and a launcher function in a .cu file containing 

no MPI 
– Write a C (or Fortran) main program with MPI 
– Build .cu nvcc, rest with cc (or ftn) 
– Link via cc (or ftn) 
– Launch executable with aprun 

• The Code: example2_mpi/scaleitC* 
• Supported PEs: Any 

– Works best with GNU or Cray (with -hgnu flag) 

• Gotchas 
– nvcc uses C++ name mangling unless extern “C” is used. 
– If CUDA and MPI must exist in the same file, it’s necessary to point 

nvcc to the MPI include directory 

January 2012 OLCF Titan Workshop 11 



CUDA FORTRAN 
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CUDA Fortran - What? 

• CUDA Fortran is a parallel to CUDA for C created 
by PGI and Nvidia and supported by PGI. 

• It is a mixture of library calls and Fortran 
extensions to support accelerators. 

• Requires explicitly rewriting important parts of 
your code to 

– Manage accelerator memory 

– Copy data between CPU and accelerator 

– Execute on the accelerator 
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CUDA Fortran (serial) 

• The Plan 
– Create a Fortran module containing CUDA kernel and data 

– Create Fortran main, which calls launcher function from 
above module 

– Build and Link with ftn 

– Run with aprun 

• The Code: example1_serial/scaleitF.F90 

• Supported PEs: PGI Only 

• Gotchas 
– CUDA Fortran requires the use of Fortran modules, if you 

have pure F77 code, it will need to be updated to F90 
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CUDA Fortran (mpi) 

• The Plan 
– Create a Fortran module containing CUDA kernel and data 

– Create Fortran main, which calls launcher function from 
above module 

– Build and Link with ftn 

– Run with aprun 

• The Code: example2_mpi/scaleitF.F90 

• Supported PEs: PGI Only 

• Gotchas 
– CUDA Fortran requires the use of Fortran modules, if you 

have a pure F77 code, it will need to be updated to F90 
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BUILDING A PARALLEL OPENCL 
CODE 

See example3/ 
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OpenCL - What? 

• OpenCL is a set of libraries and C language 
extensions for generic parallel programming over 
a variety of devices. 

• Industry standard maintained by Kronos Group 
and supported by multiple vendors. 

• Functionally similar to low-level CUDA driver API. 
• Requires explicitly rewriting important parts of 

your code to 
– Manage accelerator memory 
– Copy data between CPU and accelerator 
– Execute on the accelerator 
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OpenCL 

• The Plan: 
– Write an OpenCL kernel and a launcher function in 

a .c 

– Write a C (or Fortran) main program with MPI 

– Build with cc (and maybe ftn) 

– Link via cc (or ftn) adding -lOpenCL 

– Launch executable with aprun 

• The Code: example3/ 

• Supported PEs: GNU 
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SHARING DATA BETWEEN CUDA 
AND LIBSCI 
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LibSci and CUDA for C 

• What: Part of the code relies on LibSci 
routines and part has been written in CUDA 

• The Plan: 

– Build and use CUDA for C as before 

– Use libsci_acc’s expert interface to call device 
kernels with your existing device arrays. 

• The Code: example4_cudaC_libsci/ 

• Supported PEs: GNU & Cray (with -hgnu) 
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Libsci + CUDA for C 

 

 

 

/*  Copy A to the device                  */ 

cudaMalloc( &d_A, sizeof(double)*lda*M); 

cublasSetMatrix( M, N, sizeof(double), A2, 

                 lda, d_A, lda); 

 

/* Calling the accelerator API of dgetrf */ 

dgetrf_acc_( &M, &N, d_A, &lda, ipiv, &info); 

 

/*  Copy A in the device back to the host */ 

cublasGetMatrix( M, N, sizeof(double), d_A, 

                 lda, A, lda); 

cudaFree( d_A ); 

• Use cudaMalloc and 
cudaFree to manage 
the device memory 

• Use cublasSetMatrix 
and cublasGetMatrix 
to copy to/from the 
device 

• Use dgetrf_acc_ with 
your device pointers 
to run dgetrf on the 
device 
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LibSci and CUDA Fortran 

• What: Part of the code relies on LibSci 
routines and part has been written in CUDA 
Fortran 

• The Plan: 
– Build and use CUDA Fortran as before 

– Use libsci_acc’s expert interface to call device 
kernels with your existing device arrays. 

• The Code: example5_cudaF_libsci/ 

• Supported PEs: PGI 
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OpenACC - Fortran 

! allocatable device arrays 

real, device, allocatable, dimension(:,:) :: 

Adev,Bdev,Cdev 

 

! Start data xfer-inclusive timer and allocate 

the device arrays using 

! F90 ALLOCATE 

 

allocate( Adev(N,M), Bdev(M,L), Cdev(N,L) ) 

 

! Copy A and B to the device using F90 array 

assignments 

Adev = A(1:N,1:M) 

Bdev = B(1:M,1:L) 

 

! Call LibSCI accelerator Kernel 

call sgemm_acc ('N', 'N', N, L, M, 1.0, Adev, 

                 N, Bdev, M, 0.0, Cdev, N) 

 

! Ensure Kernel has run 

r = cudathreadsynchronize() 

 

! Copy data back from device and deallocate 

C(1:N,1:L) = Cdev 

deallocate( Adev, Bdev, Cdev ) 

• Use CUDA Fortran to 
declare and manage 
device arrays. 

• Call LibSCI expert 
interface to launch 
kernel on device with 
your data. 
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SHARING DATA BETWEEN OPENACC 
AND CUDA FOR C 
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OpenACC & CUDA C 

• The Plan 
– Write a CUDA C Kernel and a Launcher function that 

accepts device pointers. 

– Write a C or Fortan main that uses OpenACC directives 
to manage device arrays 

– Use acc host_data pragma/directive to pass 
device pointer to launcher 

– Build .cu with nvcc and rest per usual 

• The Code: example6_openacc_cuda/ 

• Supported PEs: Cray 
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OpenACC C-main 

/* Allocate Array On Host */ 

  a = (double*)malloc(n*sizeof(double)); 

 

/* Allocate device array a. Copy data both to 

and from device. */ 

#pragma acc data copyout(a[0:n]) 

  { 

#pragma acc parallel loop 

    for(i=0; i<n; i++) 

    { 

      a[i] = i+1; 

    } 

 

    MPI_Init(&argc, &argv); 

    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

 

    /* Use device array when calling 

scaleit_launcher */ 

#pragma acc host_data use_device(a) 

    { 

      ierr = scaleit_launcher_(a, &n, &rank); 

    } 

  } 

• Notice that there is 
no need to create 
device pointers 

• Use acc data region 
to allocate device 
arrays and handle data 
movement 

•Use acc parallel loop 
to populate device 
array. 

• Use acc host_data 
region to pass a device 
pointer for array 
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OpenACC Fortran-main 

   

 

  integer,parameter :: n=16384 

  real(8) :: a(n) 

 

  !$acc data copy(a) 

  !$acc parallel loop 

  do i=1,n 

    a(i) = i 

  enddo 

  !$acc end parallel loop 

 

  !$acc host_data use_device(a) 

  ierr = scaleit_launcher(a, n, rank) 

  !$acc end host_data 

  !$acc end data 

• Notice that there is 
no need to create 
device pointers 

• Use acc data region 
to allocate device 
arrays and handle data 
movement 

• Use acc parallel loop 
to populate device 
array. 

• Use acc host_data 
region to pass a device 
pointer for array 
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SHARING DATA BETWEEN OPENACC 
AND LIBSCI 
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OpenACC and LibSCI 

• The Plan:  

– Use OpenACC to manage your data 

– Possible use OpenACC for certain regions of the 
code 

– Use LibSCI’s expert interface to call device routines 

• The Code: example7_openacc_libsci 

• Supported PEs: Cray 
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OpenACC with LibSCI - C 

 

 

 

#pragma acc data 

copyin(a[0:lda*k],b[0:n*ldb]) 

copy(c[0:ldc*n]) 

   { 

#pragma acc host_data use_device(a,b,c) 

      { 

          

dgemm_acc('n','n',m,n,k,alpha,a,lda,b

,ldb,beta,c,ldc); 

      } 

   } 

 

• OpenACC data region 
used to allocate device 
arrays for A, B, and C 
and copy data to/from 
the device. 
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OpenACC with LibSCI - 
Fortran 

 

 

 

 

 

 

!$acc data copy(a,b,c) 

!$acc host_data use_device(a,b,c) 

      Call 

dgemm_acc('n','n',m,n,k,alpha,a,lda,b

,ldb,beta,c,ldc) 

!$acc end host_data 

!$acc end data 

 

• OpenACC data region 
used to allocate device 
arrays for A, B, and C 
and copy data to/from 
the device. 
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PE Support Summary 

CUDA for C CUDA 
Fortran 

LibSci_acc OpenAcc OpenCL 

PrgEnv-cray 

PrgEnv-pgi 

PrgEnv-gnu 
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Full Support 

Limited/Forthcoming Support 

Currently No Support 


